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Abstract

The properties of the spacé of regular connections as a subset of the spacé generalized
connections in the Ashtekar framework are studied. For every choice of compact structure group
and smoothness category for the paths, it is determined whdttsedense ind or not. Moreover,
it is proven that4 has Ashtekar—Lewandowski measure zero for every non-trivial structure group
and every smoothness category. The analogous results hold for gauge orbits instead of connections.
© 2003 Elsevier Science B.V. All rights reserved.
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1. Introduction

One of the most important quantization methods is the functional integral approach.
There, in a first step, one determines a physical Euclidean measure on the configuration
space and reconstructs then, in a second step, the Hamiltonian theory using a kind of
Osterwalder—Schrader procedure. In the case of pure gauge field theories, the configuration
space is the spacd/G of smooth connections (i.e. gauge fields) modulo smooth gauge
transformations in some principal fibre bundteover the (space[-time]) manifoltl with
the structure groug. However, in general, the structure 4f/G is very complicated: It
is a non-affine, non-compact, not finite-dimensional space and not a manifold. Therefore,
when defining measures there, enormous problems appeared that have been solved to date
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only partially. To avoid some of these problems, Ashtekar ¢2dd,4,3]proposed to extend

the configuration space by distributional gauge orbits. Uslfwglgebraic techniques, this
spaceA/G could be interpreted as the compact spectrum ofth@lgebra generated by
the Wilson loops based on piecewise analytic paths. Refitigllshowed thatd/G can

be densely imbedded intd/G. This coincides fully with the expectations made in other
rigorous functional integral approaches, e.g. in the Wiener-integral study of the diffusion
equation. Later on, also the spacésindg of smooth connections and gauge transforma-
tions, respectively, have been enlarged by distributional objects, leading to the spaces
andgG. Using projective-limit techniques it has been shown thag = A/G.

However, there still had been a problem: in view of the desired applicability of the new
approach to quantum gravity, due to its diffeomorphism invariance, one should consider at
least smooth paths for the arguments of the parallel transports. The main problem from the
technical side is the following: in contrast to the piecewise analytical category two paths
now can have infinitely many intersection points without sharing just a complete interval.
In other words, two finite graphs need no longer be contained in a bigger third graph being
again finite. This problem has been first cured by Baez and S&wdhin the immersive
smooth case using so-called webs. Recditly8], it has been shown that using so-called
hyphs all smoothness categories can be handled at the same footing, whereas webs and
graphs now are special kinds of hyphs.

The knowledge about théle of regular (i.e. smooth) connections in these non-analytic
frameworks, however, is still quite limited. In the case of webs, only for the case of connected
and semisimple structure grou@st is known thatA is dense ind (and consequentlyl/G
in A/G as well). Therefore, we will now study in this article the properties of the spaces
G and.A/G viewed as subspaces df, G and.4/G, respectively, in more detail within the
hyph framework. The outline of this main body of the paper will be as follows. First we will
discuss how these embeddings may depend on the necessary choice of a specific (typically
non-smooth) trivialization oP. It will turn out that all possible embeddings are in a certain
sense equivalent. Afterwards, we will prove tigais dense ing iff G is connected. The
corresponding criterion fad and.A/G, however, will be more difficult. As we will see,
whether the denseness is given or not, does crucially depend on the structur&gndp
on the used smoothness category for the paths. The most important result will be that in the
non-analytic framework the denseness is at most be given for semisBnleat section is
followed by a discussion how to modify the definitions4fG and.A/G to get possibly the
desired denseness. Finally, we will generalize the theorem of Marolf and Mour&o about the
Ashtekar—Lewandowski measure.4fand.A/G to the case of general smoothness of paths.

We remark that an application of the denseness results of the present article to the
C*-algebraic formulation of the Ashtekar framework can be found in the pgpdoy
Abbati and Mania.

2. Preliminaries
In the section, we briefly recall the basic definitions and conventions used in this paper.

General expositions can be found[$)4,3] for the analytic framework and i[9,11,8]for
arbitrary smoothness classes. The notion and the properties of hyphs are disc{&8&d in
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Let now G be some arbitrary compact Lie grould, be a connected manifold having
at least dimension 2 and be some arbitrary, but fixed point i. (The restriction to
dimM > 2 is only due to technical reason®jM, G)—or, shortly, P—denotes some
principal fibre bundler : P — M with structure grouj, and P, denotes the fibre—1(x)
overx € M in P. Next, we choose once and for all some smoothness@yer the paths
with » € Ny, r = oo (“smooth”) orr =  (“analytic”), of course, withr not being larger
than the smoothness categoryMf and decide whether we will consider only immersive
paths or also non-immersive paths. NdMdenotes the set of all (finite) paths M. P is
(after imposing the standard equivalence relation, i.e. saying that reparametrizations and
insertions/deletions of retracings are irrelevant) a groupoid. A graph is a finite set of edges
(i.e. possibly closed, but elsewhere non-selfintersecting paths) that intersect each other at
most in their endpoints. The subgroupoid generated by the paths in a fraph be
denoted byP-. Graphs are ordered in the natural way:< I'" iff P € Pr». The setd
of generalized connectionsis now defined by

A= |ian71p ~ Hom(P, G)

with 71y = Hom(P,,G) = G™ for all finite setsy of paths. (Oftend is written syn-
onymously ag: ; to stress on the homomorphy property.) Correspondingly, thé skall
generalized gauge transformatigns defined by

G = lim rGr = MapsM, G)

with G, := MapsV(y), G) = G*V @) for all finite y < P, whereV (y) denotes the set of
all end points of the paths ip. The value of inx € M is denoted by, € G or sometimes
shortly byg,. The space& acts continuously oml via

hAog(V) = g;((l))h;,(y)gy(l) for all pathsy

yielding the factor spacel/G of generalized gauge orbitst, G and.4/G are compact
Hausdorff spaces. Moreovétacts ong continuously by conjugatiorzo g’ == g~ 1-5-7'.
This action is compatible with the action Gfon A, i.e.(Acg)og = (Aog)o(gog).
(Note, that the action in both cases is always from the right.)

A hyph v is a finite (ordered) set of edges, ... , es,, Where every; € v possesses
some “free” point. This means, for at least one direction none of the segmentstafting
in that point in this direction is a full segment of some of ¢éhe. . . , ¢;_1. The set of hyphs
is ordered analogously to the set of graphs. In contrast to the case of graphs, this ordering
is a direct ordering in the case of hyphs werysmoothness category, i.e. for each two
hyphs there is always some third hyph containing both. Nevertheless, we have

Zéli(r_n,;lv, §;|ian§v and Z/§s|ian,Ttv/§U.

The corresponding continuous projections to the constituents of the projective limits are in
all these three cases denoteddyyrespectively. It has been proven, thatis surjective for
all hyphsw.

Finally, the Ashtekar—Lewandowski measugis the unique regular Borel measure on
Awhose push-forwardr, ). 1o to A, coincides with the Haar measure there for every hyph
v. Sincepug is G-invariant, it can be seen as a measuredy§ as well.
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3. Embeddings

In the projective-limit approach to Ashtekar connections, one needs a certain global
trivialization of the underlying principal fibre bundle. That this trivialization can be cho-
sen smooth is, of course, only possible if we are given a globally trivial bundle. How-
ever, for Ashtekar connections we can takmy trivialization, i.e. one for every fibre
separately. It is, therefore, necessary to investigate how the choice of trivializations in-
fluences the embedding of the smooth objects into their extensions. (Some investigations
have been made already [8].) But, as we will see this influence can be neglected.
More precisely, for any two trivializations we find some isomorphism4oind G, re-
spectively, that maps the one embedding to the other and respects the adfiom of.
Consequently, we will see that the embedding4G into A/G is even completely in-
dependent of the choice of the embedding—may the trivialization be non-smooth every-
where.

We start with the following definition.

Definition 3.1. Let 2 = {&, : P, — G|x € M} be a set of fibre trivializations and denote
the parallel transports accordingAoe A along the patly € Pby 7,4 : Pyo) = Py).

Theembeddingz of the regular gauge theorinto the generalized gauge theory corre-
sponding to= consists of the following three mappings all again denotedsby

1.tz A — Awith hoa)(y) i= (Epy 0 T4 0 E;((l)))(ee) €G.
2.1z G — Gwith tz(g))(x) i= (Ex 0 g0 E;M)(eq) € G.
3. 151 A/G — A/Gwith iz([A]g) = [ta(A)]g

Recall thatZ,, in general, does not depend continuouslycon

o O

Proposition 3.1. For every setz of fibre trivializations 1z : A — Aandiz : G — G
and.z : A/G — A/G are well-defined mappings. Moreoyé¢he second one is a group
homomorphism

Proof.

1. 15 : A — Ais well defined, since for all composahles € P we have

hiz(a)(y 0 9)
= (E(yos)(1) © Tyos.A © E(_)/%;S)(O))(EG)
= (85(1) 0 T5,4 0 TyA © Ey_«l»)(ee)
= (85 © 1.4 © B35 © By © Ty.a © 5, (e)
= (Bt 0 7.0 0 Fyh)(€0) - (Exty 0 7.4 © Ty (ec)

= hiz(a) (Vhiza)(8)

by the invariance of the parallel transport under the actio@ oh P.
2. 15z : G — Gis obviously well defined, and moreover a group homomorphism.
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1z 1 A/G — A/Gis well defined, since for all pathse P

hiz(a0g)(Y)
= (8y1) © Tpaog © E,5)(€c)
= (Zym 0 goTra0g T o E,5)(ec)
=(8ypogo E;&) oEypoTtpa0 E;(%) o Eyo) o g_l o E;(%))(eg)
= (8y0 08 10 F5)(€6) (y) 0 Ty.a © B3 (€0) (108 0 &) (€0)
= (z(@)O) - kg () - (L2 (@) (D)
= hizA)ouz(9) (V) ]

Definition 3.2. Let &1 and &> be two trivializations. _
Then.z, and:z, are calledequivalentff there is someg ! € Gsuch that

1. 15,(A) =15,(A) o g:l forall A € Aand
2. 15,(8) =t5,(g) o g~1 forallg e G.

Corollary 3.2. If two trivializations are equivalenthen the corresponding embeddings of
A/G coincide

Proof. By definition, for two equivalent trivializations; and 5> there is somg € G such
thatiz,(A) = 15,(A) o g, henceg,([A]g) = [tz z(A)]g = [L:l(A)]g = 15, ([A]g) for all
Ae A O

As it was to be expected, we have the following theorem.

Theorem 3.3. All embeddings are mutually equivalent

Proof. Let 21 andZ5 be some trivializations. Defing, := [((El)xo(Ez);l)(eG)]_l eG
for x € M and se@éi ‘= (gx)xem- Then we have for alh € Aand ally € P

hl’“ (A) —"‘l (V)
= <g52>;(%,)h151m>(y)(g:;pym
= [((EDy0) © (82);,))(€a)] (EDy) © T4 © (E1)5))(e6)
1(EDya © (523 (ec)]
= (82, © (ED ) 0 (EDya) © T4 0 (D)5 © (B y0) © (F2) ) (€c)
= hig, (),
—E1

hencez,(A) =5,(A) o g:l Itis easy to see that analogoushy(e) =tz () o 8z, O

Until now we have not justified the notion “embedding” fgr. This will be caught up
on next.
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Proposition 3.4. Forevery set? of fibre trivializations s : A — Aandiz : G — G and
1z 1 A/G — A/G are injective

Proof.

1. Injectivity of.z : A — A. For this, letA; andA; be two connections with, ;4 () =
h.z a0 (y) forall y € P. AssumeA; # Ap. Then there is somg € P and some tangent
vectorX e T, P such thatX is horizontal w.r.t.Aq, but not w.r.t.A,. If, however,y is
some path through(p), whose tangent vector it p) equalsr, X, then the horizontal
lift 1 of y w.r.t. A1 has to be different from the horizontal lift w.r.t. A>. Hence (at least
along a suitable subpath gj the corresponding parallel transports have to be different
as well, in contradiction té,;(4,) = A,z (4, Of to the homeomorphy property f; for
somex € M.

2. Injectivity oftz : G — G. This is obvious.

3. Injectivity ofiz : A/G — A/G. Let[A1] and [A2] be inA/Gwith iz ([A1]) = tz([A2]).
This means,z(A2) = 1z(A1) o gz for somezz € G depending orE. By Theorem 3.3
we can choosgs such thagz, = gz, o g2t With (321), == [((B1)x 0 (82)7 1) (e)]
for every two trivializationsZ; and&>. We have to show thatz can be chosen regular,
|eg5 €1z(9).

For this, lety(r) be some path i/ with initial point x. The relation, ;(4,)(y) =
(82)7 Yhiza)) (V) (35)y for all y € Pyy guarantees thaz)ym = hizcay Vo)t
(g2)xhi5(42) (Vl[0,1)- Since we reach every point M by some patly starting inx and
since is a bijection betwee x G andz—1(M) = P, thereis a unique (not necessarily
differentiable) gauge transforgy; : P — Pwith (1z(gz))(y) = (EyogEOE;l)(eg) =
(gz)yforally e M.

Now we assume thaf is C” over some opel C M. Thenh,;4)(yljo,q) depends
differentiably ont for everyy e P with imy C U and, consequentlygz), () is
differentiable as well. Using thaf is a diffeomorphism betweeli x G andz~1(U) <
P, we see thagz|,-1, is even differentiable.

Since around every point iif there is some differentiable trivialization, we can define
a global gauge transforg: P — P by g(p) := g=(p) for p € ~X(U) if & is any
differentiable trivialization over a neighbourhodf x € M. Let now& and&’ be two
differentiable trivializations ovel/. Fory € P contained in and having base point
we have

12(82) (V1) = 1z (g2) 0 82 ) (1(1))
= @2z (an VI0.) @) g (a0 (V10,0 (BE ) yio
= hisap @l @53 M @)@ )xhizan (Vi)
= huz(an (Vl10.0) @8 chuz(an (VI[0.0)
=12(8z)(¥(®),
where we used again the transformation behavioug@nd:z . Sincey was arbitrary
in U and:z is an embedding, we gtz = gz on—1(U). Henceg is well defined.

Moreover, since everyz is differentiable in the domain of differentiability &, we
get the differentiability ofe. The proof ends byz(g) = g=. O
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Since we now know that the topological structure of the embeddings 6fand.A/G as
well as the structure of the action Gfon A is completely independent of the choice of the
trivialization, we will no longer worry about this and assume that we will have chosen in
the next proofs, if necessary, silently some appropriate trivialization; however, the results
will be independent. In particular, we will simply writé € A andA instead of £ (A) etc.

4. Denseness

In this main section, we are going to study the properties of the embeddings of the
smooth objects into their Ashtekar extensions. Before we come to the more difficult case
of connections, we start with the rather easy investigation, when the space of regular gauge
transformations is dense in that of generalized ones.

Theorem 4.1. Gis dense irfg iff G is connected

Proof.

= Let G be not connected and lgt and g> be contained in the different connected
component§,, andG,,, respectively. We define the open $et= G,, x G,,, choose
a differentiable connected trivializatioti € M and fix two pointsx; andx, in U.
Then, for every edgg connectinge; andxz in U, the setr, 1(V) = (71, x 7,,)~H(V)
is non-empty open ig and contains no regular gauge transforngin

< Let G be connected. Then, obviously, for every hyphnd everyg € G*V® there
is some regular gauge transfogwith g(x) = g, for all x € V(v). Hencer,(G) =
G*® = G, andLemma A.lyields the denseness. O

The remaining part of this section is devoted to the proof of the following theorem.

Theorem 4.2. A is dense ind precisely in the following cases

1. in the analytic category for connect&t
2. in the immersiveC” category for connected and semisim@e
3. in the non-immersiv€” category for trivialG.

The same criterion is true for the densenessigg in A/G.

We will prove this theorem case by case starting with the easiest one.

Lemma4.3. The denseness is given for trivial

Proof. Obvious due tod = A and.A/G = A/G for trivial G. O

The next lemma contains the remaining cases of denseness.

Lemma4.4. The denseness is given

1. in the analytic category for connect&it and
2. inthe immersiveC” category for connected and semisim@e
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Pr oof.

1. In the analytic case, the definition g, G and.4/G using hyphs is equivalent to that
using graphg8]. Consequently, the denseness results4pg [17] and.A [9] can be
transferred immediately.

2. In the smooth immersive case, the definitiondpl and.A/G is equivalent to that using
webs, where the denseness resultAonas been proven if13]. Since evenr,(A) =
G* for all websw [13], we get the denseness result Gprollary A.2for A/G as
well.

Originally, webs have been defined only for smooth, & paths. However, one
sees quite immediately, that this definition and the corresponding subsequent theorems
can be generalized to the case of arbitrary immer§tvpaths ¢ > 0). Therefore, the
denseness results can be transferred as well. O

Now let us turn to the cases of non-denseness again starting with the two simplest ones.

Lemma4.5. The denseness is not given for non-conne@ed

Note that using the standard identifications, we hdyé = A/G.

Proof. Let o be a closed edge contained completely in a contractible neighbourhood of
m = «(0) = «a(1) in M. Then (using some trivialization being smooth there) we have
7. (A) C Go, whereGg C G be the connected componenteagf. On the other hand, since
a is a hyph[8], we haveA, = 7,(A) = G. The assertion now follows fromemma A.1
becaus&s is, of course, not dense {B.

The proof for.4/G now follows fromCorollary A.2 the action ofG, is just the adjoint
action of G which leave<5 invariant. O

Lemma4.6. The denseness is not given in the non-immersive smoothness cat€gay if
non-trivial.

This lemma has been shown fdralready in[8]. We give here a slightly modified proof
that includes bottd and.A4/G.

Proof. Let y be a closed, immersive path without self-intersections jiit) := y(z2).
Theny’ is not equivalent tg/ (cf. [11]) and not an immersion. Moreover, := {y, y'}
is a hyph. However, since obvioushy,(A) = h,/(A) for all A € A, we haver,(A) €
{(g, 9)|g € G} thatis a non-dense subset®f = A, for non-trivial G. Lemma A.lyields
the assumption far, Corollary A.2that for A/G. In the last case, observe thGt is the
adjoint action ofG which leaved (g, ¢)|g € G} invariant. O

Now we come to the most difficult case. We will here reuse a certain example of paths
(seeFig. 1) given in the pap€i6] of Baez and Sawin. It has been used there to show that the
direct transfer of the definition of spin networks from the analytic to the smooth category is
not possible. Here we will exploit another property of these paths: they are independent as
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m

b
= ee 05,05, 6%, 0%, 87 o7 65 85 o -+
Vo= 6740750707, 65 b6y 0y 8y 6y -
Ay = 01, 67568, 07, 85 6y 0F 65 &F -+
Yyi= e 07,68, 87, 6%, 65 07 65 85 67 -+

Fig. 1. Paths used in the proof bémma 4.7

graphs, but not holonomy-independent for abelian structure groups. This can be generalized
to provide us with the following lemma.

Lemma4.7. The denseness is not given for non-semisimple conn&dtethe C" smooth-
ness category

Proof.

e Letus consider the map
0:G*—> G, 3> g18283 '8, "

SinceG is supposed to be connected, it is isomorphi¢Gas x U(1)¥)/N, whereGsgs

is some semisimple Lie group,is a natural number (by assumptiénz 0) andN is

a discrete central subgroup 6&s x U(1)*. Now we definek’ := [Gss x {e}]n € G,

wheree is the identity inU(1)¥, andK := 6-1(K’) € G*.

o K is Ad-invariant Letg € K, i.e.0(2) = [gss ¢]n for somegss € Gss Then for all
2 = [gss gabln € G, we haved(z133) = [2s'gss¥ss eIn € K/, hencegz g3 €
LK) =K.

o KisclosedObviouslyGssx {e} € Gssx U(1)¥isclosed, henck’ = [Gssx {e}]n € G
as well by the compactnessf i.e. K is closed by continuity of.
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o K # G* Letus assum& = G* Thenwe havé(g) € K’ forall g € G*. This means,
we always get

9([81,5& gl,ab]N, ceey [84,53 84,ab]N)
_ -1 -1 -1 171 _
= [81,5582,5583 5584 55 81,ab82,ab83 ab84 ablN = [&ss €IN

for somegss € Gss In particular, for allgay € (U(1)¥)* there has to exist some
n = (nss nap) € N, such tha@l,abgz,abgiébg;éb = nap. Then, by the finiteness of
N, alsoU(1)¥ has to be finite, which requirés = 0. But, thenG is semisimple in
contradiction to our assumption.

o Kis ?ot dense is*. This follows simply from the fact thak is a closed proper subset
of G~.

e Now we have a look aFig. 1 Let the paths; be given as indicated there, lgtbe
some path fromw’ to m, that does not intersect any of the pathand leta; = y;y.
Obviously, these four pathsg; till «4 form a hyphv with m being the free point for
everyw;. However, although these paths are independent graph-theoretically, tiney are
independent w.r.t. regular connections: beth, andy,ys are paths, that run precisely
once through each! ands- and precisely twice througp. Consequently, the abelian
parts off 4 (y1y2) andh 4 (y4y3) coincide for every regular connectigne A up to some
nap in the abelian part oN. Thus,8(,(A)) = ha(yD)ha(y2)ha(y3) tha(ys)™t =
[gss naplN = [gssns_sl, e]n € K’ for somegss € Gssand somer = (nss, nap) € N, hence
7,(A) € 671(K') = K. SinceK is not dense irG* = A,, Lemma A.limplies that4
is not dense ind.

o The statement far /G follows now again byCorollary A.2 sinceg, is the adjoint action
of G onG* leaving K invariant. O

5. Discussion

The just proven lemma is in a certain sense a contrast to the usual expectation, that within
the functional integral framework the classical theory should be a dense subset of the
quantized theory (cf. as an easiest example the Wiener integral for the diffusion equation
[16]). Let us, therefore, discuss how some modification of the definition of generalized
connections could lead to the desired denseness of the regular connections.

1. The number of paths is reducethis can most easily be done by sharpening the as-
sumptions regarding the smoothness of paths. However, in view of applying the whole
framework to quantum gravity, at least immers@f® -paths should be allowed. Then, of
course, we are no longer able to couple theories to gravity which have non-semisimple
structure groups.

2. The number of independent paths is reduéde could try to plug the desired indepen-
dence of paths into the equivalence relation of paths. This idea closely follows the idea
of holonomy equivalence used in the first articles on Ashtekar connedficsisHere
two paths are said to be equivalent iff they have the same parallel transports for every
regular connection. It is obvious that this way the proofefnma 4.7can no longer be
used: for instanceyyaz andazag would be equivalent in the abelian case. (But, note that
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this is not true in the non-abelian case. Although here the holonomies are not arbitrarily
selectable, they are not always equal.) However, the lack of denseness for non-abelian
andnon-semisimple structure groups remains true. This follows from the fact, that in the
semisimple casey,,;); : A — G%is surjective, whencej a2 andazws cannot be equiv-

alent at least if5 contains a non-trivial semisimple part. In fact, it has been sHa®h

that in the non-analytic immersed category for non-abelian structure groups two paths
are holonomically equivalent iff they are graph-theoretically equivalent. Therefore, in
these cases the usage of holonomy equivalence is not successful. Moreover, this method
has the drawback that in the case of non-immersed paths it is probably very difficult to
find at all concrete and explicit criteria for independence of paths.

3. The range of the parallel transports is restrictéthis idea is precisely the basis for the
definition of connections using webs. Namely, here—although done only for smooth and
immersive paths—the spagByen is not defined as a projective limit of all,, := G**,
but as a projective limit of all imaged,, := 7,,(A) € G** of regular connection§7].

This way, automatically the surjectivity af,, : A — Awep iS guaranteed, hence the
denseness of in Awepas well. (The denseness follows, because fkgsn = Ii£1 wAw,
second the set of all webs is directed and third the projectigns A — A, are per
definition surjectivg9]. The denseness of/G in Awep/G is now trivial.)

Unfortunately, none of the three possibilities discussed above is free of drawbacks such
that a “final” decision about the definition of generalized connections can at most be given
after studying more and concrete physical models.

6. Measure

In this final section, we generalize the theorem of Marolf and Molitd about the
Ashtekar—Lewandowski measure df and.A/G to the case of arbitrary path categories
considered here.

Theorem 6.1. Both.A and.A/G are contained in a set of Ashtekar—Lewandowski measure
0 providedG is non-trivial.

In the case thaG is trivial, we haveAd = A and.A/G = A/G which means that the
regular connection as well as the regular gauge orbit form a set of full measure 1.

Before we are going to prove the theorem, we note that Mourado gi5iwere able to
sharpen the statement above in the casd dfastically: lete be some edge ang be the
respective initial path of w.r.t. the interval [Qs] for s € [0, 1]. Moreover, let

q;:10,1] - G, s hj(es)

forall A € A. Thenthe setof all € Athat possess justa single pointin {0, whereg; is
continuous, is contained irnug-zero subset. This means, typically a generalized connection

is nowhere continuous. Although the proof has been done in the analytic case, it can be
transferred to the general case almost literally. However, that proof does not give a statement
on the measure ofl/G such that we will not reuse it. Instead our proof is motivated by that

of Marolf and Mouréo: the only accessible quantities within the Ashtekar framework are
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parallel transports and holonomies. Therefore, one has to study how their behaviour is mod-
ified during the transition from regular to generalized connections. Typical for the regular
case is—in total contrast to the generalized case—that parallel transports depend in a certain
sense continuously on the paths. One can even prove that by means of a certain topology on
‘P the regular connections can be identified with the continuous homomorphism®frem
M [12]. In particular, “small” paths have “small” parallel transports. A more detailed anal-
ysis[9] yields the well-known result (see e[d4]) that for every regular connectiohthe
differenceh 4 (o) — eg is more or less proportional to the area enclosed by the sufficiently
“round” loop «. This behaviour implies that the holonomies of a regular connection are
trapped for shrinking in a small area aroung whose diameter decreases proportionally
to ||k 4 (a) — eg |l and whose Haar measure consequently decreasés 48" C. However,
generalized connections can even for very tilye anywhere iiG.

Altogether we have the following proof.

Proof.

e Let first dimG = 0. Then (in an appropriate neighbourhoodfi,(A) = eg for all
regularA. Let now («;);eny € HG be a sequence of mutually non-intersecting closed
edges having base poimt Then

yens

for all i € N. SinceG is non-trivial, hence & > 2, we haveuo(A4) = 0. Analogously,
we getu(A/G) = 0.

e Let now dimG > 0. We consideiG as a subset of som&(n) C Glg(n) € C™"
(and sog C glc(n) = C™" as well), choose some AB-invariant norm|| - ||, on
C"™" and defineB.(eg) := {g € Glllg — eclle < ¢} for all ¢ € R,. (For instance,
I Dlle := SUBccn 3 =1l DXll, D € C"™*", is AdG-invariant due to the unitarity of any
compact group.) Obviously. (eg) is always an Ads-invariant set.

Next, we choose some chart mappingM 2 U — «(U), such thain € U. W.l.0.g.
x(U) € RIMM he hounded and(m) = 0. We assign td/ the Euclidean metric and
choose some surfadé C U spanned by two coordinates.

Finally, we assume that the chart image of everg G used below is a circle in
k(H) € R?. The area of the domain encloseddin H be|G,|.

e Now we define for allv and all real € R, the set

Ua,r = ﬂ(;l(BHGu‘(EG)) < '71

being G-invariant by the Ad-invariance 0B (eg). By the appendix if10], we have
110Uar) = KHaalBrig,|(ec)) < constr|G,[)4MC. Hence,uo(Uy,r) goes to 0, in
particular, for|G4| | O.

e Let now(«;);cn be some sequence of circles wijthy, | | 0, such that each two of them
have preciselyn as common point. We define

U, .= ﬂUai,,.
ieN
Obviouslyuo(U;) < inf; {o(Uy;.r)} = 0.
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e On the other hand, for everyt € A there is somes, € Ry with A € Uy, =
N&l(BmGa\(EG)) for all circlesa (cf. Appendix in[10]). Hence,A € U.,. Therefore,
U = ,en, Urisobviously guo-zero subset containing. SinceU is eveng-invariant,
U/G is auo-zero subset as well, now containinyGg = A/G. O

We note finally, that the just proven support property is typical for the description of
physical theories in terms of functional integrals. For instance, it is well known that in the
Wiener-integral case the classical configuration space af’apaths is a zero subset in
its completion (cf[16]). But, this is to be expected, since otherwise the measure on the
completion would define a non-trivial, physically “reasonable” measure on the classical
configuration space as well, although the existence of such a measure usually is seen to be
unlikely.
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Appendix A. Densenesscriteria

Let A be a set anék be a partial ordering oA. Next, letX, be a topological space for
eacha € A and an : X4, & Xg for all ap < ap be a continuous and surjective map
with 7752 o gy = mgs if a1 < a2 < az. The corresponding projective limit lim,cs X,
is denoted byX. Furthermore, letr, : X — X, be the usual continuous projection on
the a-component andk be some subset 6. Finally, let A be directed, i.e. for any two
a,d’ € A, thereisam € A withd,d’ <a.

LemmaA.l. X is dense in¥iff 7,(X) is dense inX, forall a € A.

The «-direction has already been proveri&. We quote it for completeness.

Proof.

= Leta € A be arbitrary and let/, € X, be open. Theﬁra—l(Ua) is open inX. Hence,
there is anx € X with x e 7 %(U,). Consequentlyz, (x) € m,(m;*(Uy,)) C U,.

& LetU € X be open and non-empty, i.&. 2 (; 7, 1(Vi) # @ with openV; C X,,
and finitely manya; € A. SinceA is directed, there is am € A with ¢; < « for all
i and thusU 2 7, 1(N);(r4)~1(V;)) with non-emptyV = M);(x¢)~1(Vi) € X,. V
is open becausg]. is continuous. Since, (X) is dense inX,, there is anx € X with
m,(x) € V and sar,, (x) € V; for all i, hencex € U. O

Now, let additionallyG := lim,c4 G, be some projective limit of compact topological
groupsG, acting continuously and compatibly on the corresponding compact Hausdorff
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spacesX,. Moreover, for both projective systems all the projectiapde surjective. For a
precise definition of projective-limit group actions, $é4¢3,9].

Corollary A.2. X/G is dense inY/G iff 7,(X)/G, is dense inX,/G, for all a € A. In
particular, we have

e densenessif,(X) = X, foralla € A; and
e non-densenessif,(X) is for all a € A contained in somé&,-invariant and non-dense
subset ofX,,.

Proof. We defineX/G := lim,ca X4/ G4. Then, by the assumptions, the map

¢ ‘;_E/a - ms [(xa)aecal = ([XaDaea

is a well-defined homeomorphis8]. By the lemma aboveX /G is now dense int/G iff
7.(p(X/G)) = 7.(X)/ G, is dense inX,/ G, forall a € A.

To prove the non-denseness in the special casertl{at) is for alla € A contained in
someG ,-invariant and non-dense subsetXf, use the fact that the canonical projections
X, — X,/G, are always open. The other special case is trivial. O

The above assumptions for the projective limits are fulfilled®b&= A andG defined
using hyphs as label sdt[11,8,9]
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