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Abstract

The properties of the spaceA of regular connections as a subset of the spaceA of generalized
connections in the Ashtekar framework are studied. For every choice of compact structure group
and smoothness category for the paths, it is determined whetherA is dense inA or not. Moreover,
it is proven thatA has Ashtekar–Lewandowski measure zero for every non-trivial structure group
and every smoothness category. The analogous results hold for gauge orbits instead of connections.
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1. Introduction

One of the most important quantization methods is the functional integral approach.
There, in a first step, one determines a physical Euclidean measure on the configuration
space and reconstructs then, in a second step, the Hamiltonian theory using a kind of
Osterwalder–Schrader procedure. In the case of pure gauge field theories, the configuration
space is the spaceA/G of smooth connections (i.e. gauge fields) modulo smooth gauge
transformations in some principal fibre bundleP over the (space[-time]) manifoldM with
the structure groupG. However, in general, the structure ofA/G is very complicated: It
is a non-affine, non-compact, not finite-dimensional space and not a manifold. Therefore,
when defining measures there, enormous problems appeared that have been solved to date
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only partially. To avoid some of these problems, Ashtekar et al.[2,5,4,3]proposed to extend
the configuration space by distributional gauge orbits. UsingC∗-algebraic techniques, this
spaceA/G could be interpreted as the compact spectrum of theC∗-algebra generated by
the Wilson loops based on piecewise analytic paths. Rendall[17] showed thatA/G can
be densely imbedded intoA/G. This coincides fully with the expectations made in other
rigorous functional integral approaches, e.g. in the Wiener-integral study of the diffusion
equation. Later on, also the spacesA andG of smooth connections and gauge transforma-
tions, respectively, have been enlarged by distributional objects, leading to the spacesA
andG. Using projective-limit techniques it has been shown thatA/G ∼= A/G.

However, there still had been a problem: in view of the desired applicability of the new
approach to quantum gravity, due to its diffeomorphism invariance, one should consider at
least smooth paths for the arguments of the parallel transports. The main problem from the
technical side is the following: in contrast to the piecewise analytical category two paths
now can have infinitely many intersection points without sharing just a complete interval.
In other words, two finite graphs need no longer be contained in a bigger third graph being
again finite. This problem has been first cured by Baez and Sawin[7,6] in the immersive
smooth case using so-called webs. Recently[11,8], it has been shown that using so-called
hyphs all smoothness categories can be handled at the same footing, whereas webs and
graphs now are special kinds of hyphs.

The knowledge about the rôle of regular (i.e. smooth) connections in these non-analytic
frameworks, however, is still quite limited. In the case of webs, only for the case of connected
and semisimple structure groupsG it is known thatA is dense inA (and consequentlyA/G
inA/G as well). Therefore, we will now study in this article the properties of the spacesA,
G andA/G viewed as subspaces ofA, G andA/G, respectively, in more detail within the
hyph framework. The outline of this main body of the paper will be as follows. First we will
discuss how these embeddings may depend on the necessary choice of a specific (typically
non-smooth) trivialization ofP . It will turn out that all possible embeddings are in a certain
sense equivalent. Afterwards, we will prove thatG is dense inG iff G is connected. The
corresponding criterion forA andA/G, however, will be more difficult. As we will see,
whether the denseness is given or not, does crucially depend on the structure groupG and
on the used smoothness category for the paths. The most important result will be that in the
non-analytic framework the denseness is at most be given for semisimpleG. That section is
followed by a discussion how to modify the definitions ofA, G andA/G to get possibly the
desired denseness. Finally, we will generalize the theorem of Marolf and Mourão about the
Ashtekar–Lewandowski measure ofA andA/G to the case of general smoothness of paths.

We remark that an application of the denseness results of the present article to the
C∗-algebraic formulation of the Ashtekar framework can be found in the paper[1] by
Abbati and Manià.

2. Preliminaries

In the section, we briefly recall the basic definitions and conventions used in this paper.
General expositions can be found in[5,4,3] for the analytic framework and in[9,11,8]for
arbitrary smoothness classes. The notion and the properties of hyphs are discussed in[8,9].
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Let now G be some arbitrary compact Lie group,M be a connected manifold having
at least dimension 2 andm be some arbitrary, but fixed point inM. (The restriction to
dimM ≥ 2 is only due to technical reasons.)P(M,G)—or, shortly,P—denotes some
principal fibre bundleπ : P → M with structure groupG, andPx denotes the fibreπ−1(x)

overx ∈ M in P . Next, we choose once and for all some smoothness typeCr for the paths
with r ∈ N+, r = ∞ (“smooth”) orr = ω (“analytic”), of course, withr not being larger
than the smoothness category ofM, and decide whether we will consider only immersive
paths or also non-immersive paths. Now,P denotes the set of all (finite) paths inM. P is
(after imposing the standard equivalence relation, i.e. saying that reparametrizations and
insertions/deletions of retracings are irrelevant) a groupoid. A graph is a finite set of edges
(i.e. possibly closed, but elsewhere non-selfintersecting paths) that intersect each other at
most in their endpoints. The subgroupoid generated by the paths in a graphΓ will be
denoted byPΓ . Graphs are ordered in the natural way:Γ ′ ≤ Γ ′′ iff PΓ ′ ⊆ PΓ ′′ . The setA
of generalized connections̄A is now defined by

A := lim← ΓAΓ ∼= Hom(P,G)

with Aγ := Hom(Pγ ,G) ∼= G#γ for all finite setsγ of paths. (OftenĀ is written syn-
onymously ashĀ to stress on the homomorphy property.) Correspondingly, the setG of all
generalized gauge transformationsḡ is defined by

G := lim← ΓGΓ ∼= Maps(M,G)

with Gγ := Maps(V(γ ),G) ∼= G#V(γ ) for all finite γ ⊆ P, whereV(γ ) denotes the set of
all end points of the paths inγ . The value of̄g in x ∈ M is denoted bȳgx ∈ G or sometimes
shortly bygx. The spaceG acts continuously onA via

hĀ◦ḡ(γ) = ḡ−1
γ(0)hĀ(γ)ḡγ(1) for all pathsγ

yielding the factor spaceA/G of generalized gauge orbits.A, G andA/G are compact
Hausdorff spaces. Moreover,G acts onG continuously by conjugation:̄g◦ ḡ′ := ḡ′−1 · ḡ · ḡ′.
This action is compatible with the action ofG onA, i.e. (Ā ◦ ḡ) ◦ ḡ′ = (Ā ◦ ḡ′) ◦ (ḡ ◦ ḡ′).
(Note, that the action in both cases is always from the right.)

A hyph v is a finite (ordered) set of edgese1, . . . , e#v, where everyei ∈ v possesses
some “free” point. This means, for at least one direction none of the segments ofei starting
in that point in this direction is a full segment of some of thee1, . . . , ei−1. The set of hyphs
is ordered analogously to the set of graphs. In contrast to the case of graphs, this ordering
is a direct ordering in the case of hyphs foreverysmoothness category, i.e. for each two
hyphs there is always some third hyph containing both. Nevertheless, we have

A ∼= lim← vAv, G ∼= lim← vGv and A/G ∼= lim← vAv/Gv.

The corresponding continuous projections to the constituents of the projective limits are in
all these three cases denoted byπv, respectively. It has been proven, thatπv is surjective for
all hyphsv.

Finally, the Ashtekar–Lewandowski measureµ0 is the unique regular Borel measure on
Awhose push-forward(πv)∗µ0 toAv coincides with the Haar measure there for every hyph
v. Sinceµ0 is G-invariant, it can be seen as a measure onA/G as well.
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3. Embeddings

In the projective-limit approach to Ashtekar connections, one needs a certain global
trivialization of the underlying principal fibre bundle. That this trivialization can be cho-
sen smooth is, of course, only possible if we are given a globally trivial bundle. How-
ever, for Ashtekar connections we can takeany trivialization, i.e. one for every fibre
separately. It is, therefore, necessary to investigate how the choice of trivializations in-
fluences the embedding of the smooth objects into their extensions. (Some investigations
have been made already in[3].) But, as we will see this influence can be neglected.
More precisely, for any two trivializations we find some isomorphism ofA andG, re-
spectively, that maps the one embedding to the other and respects the action ofG onA.
Consequently, we will see that the embedding ofA/G into A/G is even completely in-
dependent of the choice of the embedding—may the trivialization be non-smooth every-
where.

We start with the following definition.

Definition 3.1. LetΞ = {Ξx : Px → G|x ∈ M} be a set of fibre trivializations and denote
the parallel transports according toA ∈ A along the pathγ ∈ P by τγ,A : Pγ(0) → Pγ(1).

TheembeddingιΞ of the regular gauge theoryinto the generalized gauge theory corre-
sponding toΞ consists of the following three mappings all again denoted byιΞ:

1. ιΞ : A→ A with hιΞ(A)(γ) := (Ξγ(1) ◦ τγ,A ◦Ξ−1
γ(0))(eG) ∈ G.

2. ιΞ : G→ G with (ιΞ(g))(x) := (Ξx ◦ g ◦Ξ−1
x )(eG) ∈ G.

3. ιΞ : A/G→ A/G with ιΞ([A]G) := [ιΞ(A)]G.

Recall thatΞx, in general, does not depend continuously onx.

Proposition 3.1. For every setΞ of fibre trivializations, ιΞ : A → A and ιΞ : G → G
and ιΞ : A/G → A/G are well-defined mappings. Moreover, the second one is a group
homomorphism.

Proof.

1. ιΞ : A→ A is well defined, since for all composableγ, δ ∈ P we have

hιΞ(A)(γ ◦ δ)
= (Ξ(γ◦δ)(1) ◦ τγ◦δ,A ◦Ξ−1

(γ◦δ)(0))(eG)

= (Ξδ(1) ◦ τδ,A ◦ τγ,A ◦Ξ−1
γ(0))(eG)

= (Ξδ(1) ◦ τδ,A ◦Ξ−1
δ(0) ◦Ξγ(1) ◦ τγ,A ◦Ξ−1

γ(0))(eG)

= (Ξγ(1) ◦ τγ,A ◦Ξ−1
γ(0))(eG) · (Ξδ(1) ◦ τδ,A ◦Ξ−1

δ(0))(eG)

= hιΞ(A)(γ)hιΞ(A)(δ)

by the invariance of the parallel transport under the action ofG onP .
2. ιΞ : G→ G is obviously well defined, and moreover a group homomorphism.
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3. ιΞ : A/G→ A/G is well defined, since for all pathsγ ∈ P
hιΞ(A◦g)(γ)
= (Ξγ(1) ◦ τγ,A◦g ◦Ξ−1

γ(0))(eG)

= (Ξγ(1) ◦ g ◦ τγ,A ◦ g−1 ◦Ξ−1
γ(0))(eG)

= (Ξγ(1) ◦ g ◦Ξ−1
γ(1) ◦Ξγ(1) ◦ τγ,A ◦Ξ−1

γ(0) ◦Ξγ(0) ◦ g−1 ◦Ξ−1
γ(0))(eG)

= (Ξγ(0) ◦ g−1 ◦Ξ−1
γ(0))(eG)·(Ξγ(1) ◦ τγ,A ◦Ξ−1

γ(0))(eG)·(Ξγ(1)◦g ◦Ξ−1
γ(1))(eG)

= (ιΞ(g))(γ(0))
−1 · hιΞ(A)(γ) · (ιΞ(g))(γ(1))

= hιΞ(A)◦ιΞ(g)(γ). �

Definition 3.2. LetΞ1 andΞ2 be two trivializations.
ThenιΞ1 andιΞ2 are calledequivalentiff there is somēgΞ1

Ξ2
∈ G such that

1. ιΞ2(A) = ιΞ1(A) ◦ ḡΞ1
Ξ2

for all A ∈ A and

2. ιΞ2(g) = ιΞ1(g) ◦ ḡΞ1
Ξ2

for all g ∈ G.

Corollary 3.2. If two trivializations are equivalent, then the corresponding embeddings of
A/G coincide.

Proof. By definition, for two equivalent trivializationsΞ1 andΞ2 there is somēg ∈ G such
that ιΞ2(A) = ιΞ1(A) ◦ ḡ, henceιΞ2([A]G) ≡ [ιΞ2(A)]G = [ιΞ1(A)]G ≡ ιΞ1([A]G) for all
A ∈ A. �

As it was to be expected, we have the following theorem.

Theorem 3.3. All embeddings are mutually equivalent.

Proof. LetΞ1 andΞ2 be some trivializations. Definegx := [((Ξ1)x◦(Ξ2)
−1
x )(eG)]−1 ∈ G

for x ∈ M and set̄gΞ1
Ξ2

:= (gx)x∈M . Then we have for allA ∈ A and allγ ∈ P
h
ιΞ1(A)◦ḡ

Ξ1
Ξ2

(γ)

= (ḡ
Ξ1
Ξ2
)−1
γ(0)hιΞ1(A)

(γ)(ḡ
Ξ1
Ξ2
)γ(1)

= [((Ξ1)γ(0) ◦ (Ξ2)
−1
γ(0))(eG)]((Ξ1)γ(1) ◦ τγ,A ◦ (Ξ1)

−1
γ(0))(eG)

· [((Ξ1)γ(1) ◦ (Ξ2)
−1
γ(1))(eG)]

−1

= ((Ξ2)γ(1) ◦ (Ξ1)
−1
γ(1) ◦ (Ξ1)γ(1) ◦ τγ,A ◦ (Ξ1)

−1
γ(0) ◦ (Ξ1)γ(0) ◦ (Ξ2)

−1
γ(0))(eG)

= hιΞ2(A)
(γ),

henceιΞ2(A) = ιΞ1(A) ◦ ḡΞ1
Ξ2

. It is easy to see that analogouslyιΞ2(e)= ιΞ1(e) ◦ ḡΞ1
Ξ2

. �

Until now we have not justified the notion “embedding” forιΞ. This will be caught up
on next.
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Proposition 3.4. For every setΞ of fibre trivializations, ιΞ : A→ A andιΞ : G→ G and
ιΞ : A/G→ A/G are injective.

Proof.

1. Injectivity ofιΞ : A→ A. For this, letA1 andA2 be two connections withhιΞ(A1)(γ) =
hιΞ(A2)(γ) for all γ ∈ P. AssumeA1 �= A2. Then there is somep ∈ P and some tangent
vectorX ∈ TpP such thatX is horizontal w.r.t.A1, but not w.r.t.A2. If, however,γ is
some path throughπ(p), whose tangent vector inπ(p) equalsπ∗X, then the horizontal
lift γ̃1 of γ w.r.t.A1 has to be different from the horizontal liftγ̃2 w.r.t.A2. Hence (at least
along a suitable subpath ofγ) the corresponding parallel transports have to be different
as well, in contradiction tohιΞ(A1) = hιΞ(A2) or to the homeomorphy property ofΞx for
somex ∈ M.

2. Injectivity ofιΞ : G→ G. This is obvious.
3. Injectivity ofιΞ : A/G→ A/G. Let [A1] and [A2] be inA/Gwith ιΞ([A1]) = ιΞ([A2]).

This means,ιΞ(A2) = ιΞ(A1) ◦ ḡΞ for someḡΞ ∈ G depending onΞ. By Theorem 3.3,
we can choosēgΞ such that̄gΞ2 = ḡΞ1 ◦ ḡΞ1

Ξ2
with (ḡΞ1

Ξ2
)x := [((Ξ1)x ◦ (Ξ2)

−1
x )(eG)]−1

for every two trivializationsΞ1 andΞ2. We have to show that̄gΞ can be chosen regular,
i.e. ḡΞ ∈ ιΞ(G).

For this, letγ(t) be some path inM with initial point x. The relationhιΞ(A2)(γ) =
(ḡΞ)

−1
x hιΞ(A1)(γ)(ḡΞ)y for all γ ∈ Pxy guarantees that(ḡΞ)γ(t) = hιΞ(A1)(γ|[0,t])−1

(ḡΞ)xhιΞ(A2)(γ|[0,t]). Since we reach every point inM by some pathγ starting inx and
sinceΞ is a bijection betweenM×G andπ−1(M) = P , there is a unique (not necessarily
differentiable) gauge transformgΞ : P → P with (ιΞ(gΞ))(y) ≡ (Ξy◦gΞ◦Ξ−1

y )(eG) =
(ḡΞ)y for all y ∈ M.

Now we assume thatΞ is Cr over some openU ⊆ M. ThenhιΞ(A)(γ|[0,t]) depends
differentiably ont for every γ ∈ P with im γ ⊆ U and, consequently,(gΞ)γ(t) is
differentiable as well. Using thatΞ is a diffeomorphism betweenU ×G andπ−1(U) ⊆
P , we see thatgΞ|π−1(U) is even differentiable.

Since around every point inM there is some differentiable trivialization, we can define
a global gauge transformg : P → P by g(p) := gΞ(p) for p ∈ π−1(U) if Ξ is any
differentiable trivialization over a neighbourhoodU of x ∈ M. Let nowΞ andΞ′ be two
differentiable trivializations overU. Forγ ∈ P contained inU and having base pointx,
we have

ιΞ(gΞ′)(γ(t))= (ιΞ′(gΞ′) ◦ ḡΞ′
Ξ )(γ(t))

= (ḡΞ′
Ξ )

−1
γ(t)hιΞ′ (A1)(γ|[0,t])−1(ḡΞ′)xhιΞ′ (A2)(γ|[0,t])(ḡΞ

′
Ξ )γ(t)

= hιΞ(A1)(γ|[0,t])−1(ḡΞ
′

Ξ )
−1
x (ḡΞ′)x(ḡ

Ξ′
Ξ )xhιΞ(A2)(γ|[0,t])

= hιΞ(A1)(γ|[0,t])−1(ḡΞ)xhιΞ(A2)(γ|[0,t])
= ιΞ(gΞ)(γ(t)),

where we used again the transformation behaviour ofιΞ andιΞ′ . Sinceγ was arbitrary
in U andιΞ is an embedding, we getgΞ = gΞ′ on π−1(U). Henceg is well defined.
Moreover, since everygΞ is differentiable in the domain of differentiability ofΞ, we
get the differentiability ofg. The proof ends byιΞ(g) = ḡΞ. �
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Since we now know that the topological structure of the embeddings ofA, G andA/G as
well as the structure of the action ofG onA is completely independent of the choice of the
trivialization, we will no longer worry about this and assume that we will have chosen in
the next proofs, if necessary, silently some appropriate trivialization; however, the results
will be independent. In particular, we will simply writeA ⊆ A andA instead ofιΞ(A) etc.

4. Denseness

In this main section, we are going to study the properties of the embeddings of the
smooth objects into their Ashtekar extensions. Before we come to the more difficult case
of connections, we start with the rather easy investigation, when the space of regular gauge
transformations is dense in that of generalized ones.

Theorem 4.1. G is dense inG iff G is connected.

Proof.

⇒ Let G be not connected and letg1 and g2 be contained in the different connected
componentsGg1 andGg2, respectively. We define the open setV := Gg1×Gg2, choose
a differentiable connected trivializationU ⊆ M and fix two pointsx1 andx2 in U.
Then, for every edgeγ connectingx1 andx2 in U, the setπ−1

γ (V) = (πx1 × πx2)
−1(V)

is non-empty open inG and contains no regular gauge transform inG.
⇐ Let G be connected. Then, obviously, for every hyphv and every�g ∈ G#V(v) there

is some regular gauge transformg with g(x) = gx for all x ∈ V(v). Henceπv(G) =
G#V(v) = Gv andLemma A.1yields the denseness. �

The remaining part of this section is devoted to the proof of the following theorem.

Theorem 4.2. A is dense inA precisely in the following cases:

1. in the analytic category for connectedG;
2. in the immersiveCr category for connected and semisimpleG;
3. in the non-immersiveCr category for trivialG.

The same criterion is true for the denseness ofA/G in A/G.

We will prove this theorem case by case starting with the easiest one.

Lemma 4.3. The denseness is given for trivialG.

Proof. Obvious due toA = A andA/G = A/G for trivial G. �

The next lemma contains the remaining cases of denseness.

Lemma 4.4. The denseness is given

1. in the analytic category for connectedG; and
2. in the immersiveCr category for connected and semisimpleG.
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Proof.

1. In the analytic case, the definition ofA, G andA/G using hyphs is equivalent to that
using graphs[8]. Consequently, the denseness results forA/G [17] andA [9] can be
transferred immediately.

2. In the smooth immersive case, the definition ofA, G andA/G is equivalent to that using
webs, where the denseness result forA has been proven in[13]. Since evenπw(A) =
G#w for all websw [13], we get the denseness result byCorollary A.2 for A/G as
well.

Originally, webs have been defined only for smooth, i.e.C∞ paths. However, one
sees quite immediately, that this definition and the corresponding subsequent theorems
can be generalized to the case of arbitrary immersiveCr paths (r > 0). Therefore, the
denseness results can be transferred as well. �

Now let us turn to the cases of non-denseness again starting with the two simplest ones.

Lemma 4.5. The denseness is not given for non-connectedG.

Note that using the standard identifications, we haveA/G = A/G.

Proof. Let α be a closed edge contained completely in a contractible neighbourhood of
m = α(0) = α(1) in M. Then (using some trivialization being smooth there) we have
πα(A) ⊆ G0, whereG0 ⊂ G be the connected component ofeG. On the other hand, since
α is a hyph[8], we haveAα = πα(A) = G. The assertion now follows fromLemma A.1,
becauseG0 is, of course, not dense inG.

The proof forA/G now follows fromCorollary A.2: the action ofGα is just the adjoint
action ofG which leavesG0 invariant. �

Lemma 4.6. The denseness is not given in the non-immersive smoothness category ifG is
non-trivial.

This lemma has been shown forA already in[8]. We give here a slightly modified proof
that includes bothA andA/G.

Proof. Let γ be a closed, immersive path without self-intersections andγ ′(τ) := γ(τ2).
Thenγ ′ is not equivalent toγ (cf. [11]) and not an immersion. Moreover,v := {γ, γ ′}
is a hyph. However, since obviouslyhγ(A) = hγ ′(A) for all A ∈ A, we haveπv(A) ⊆
{(g, g)|g ∈ G} that is a non-dense subset ofG2 = Av for non-trivialG. Lemma A.1yields
the assumption forA, Corollary A.2that forA/G. In the last case, observe thatGv is the
adjoint action ofG which leaves{(g, g)|g ∈ G} invariant. �

Now we come to the most difficult case. We will here reuse a certain example of paths
(seeFig. 1) given in the paper[6] of Baez and Sawin. It has been used there to show that the
direct transfer of the definition of spin networks from the analytic to the smooth category is
not possible. Here we will exploit another property of these paths: they are independent as



Ch. Fleischhack / Journal of Geometry and Physics 47 (2003) 469–483 477

Fig. 1. Paths used in the proof ofLemma 4.7.

graphs, but not holonomy-independent for abelian structure groups. This can be generalized
to provide us with the following lemma.

Lemma 4.7. The denseness is not given for non-semisimple connectedG in theCr smooth-
ness category.

Proof.

• Let us consider the map

θ : G4 → G, �g �→ g1g2g
−1
3 g−1

4 .

SinceG is supposed to be connected, it is isomorphic to(Gss× U(1)k)/N, whereGss
is some semisimple Lie group,k is a natural number (by assumptionk �= 0) andN is
a discrete central subgroup ofGss× U(1)k. Now we defineK′ := [Gss× {e}]N ⊆ G,
wheree is the identity inU(1)k, andK := θ−1(K′) ⊆ G4.
◦ K is Ad-invariant. Let �g ∈ K, i.e. θ(�g) = [gss, e]N for somegss ∈ Gss. Then for all
g̃ = [g̃ss, g̃ab]N ∈ G, we haveθ(g̃−1�gg̃) = [g̃−1

ss gssg̃ss, e]N ∈ K′, henceg̃−1�gg̃ ∈
θ−1(K′) = K.

◦ K is closed. ObviouslyGss×{e} ⊆ Gss×U(1)k is closed, henceK′ = [Gss×{e}]N ⊆ G
as well by the compactness ofN, i.e.K is closed by continuity ofθ.
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◦ K �= G4. Let us assumeK = G4. Then we haveθ(�g) ∈ K′ for all �g ∈ G4. This means,
we always get

θ([g1,ss, g1,ab]N, . . . , [g4,ss, g4,ab]N)

= [g1,ssg2,ssg
−1
3,ssg

−1
4,ss, g1,abg2,abg

−1
3,abg

−1
4,ab]N = [gss, e]N

for somegss ∈ Gss. In particular, for all�gab ∈ (U(1)k)4 there has to exist some
n = (nss, nab) ∈ N, such thatg1,abg2,abg

−1
3,abg

−1
4,ab = nab. Then, by the finiteness of

N, alsoU(1)k has to be finite, which requiresk = 0. But, thenG is semisimple in
contradiction to our assumption.

◦ K is not dense inG4. This follows simply from the fact thatK is a closed proper subset
of G4.

• Now we have a look atFig. 1. Let the pathsγi be given as indicated there, letγ be
some path fromm′ to m, that does not intersect any of the pathsγi and letαi := γiγ.
Obviously, these four pathsα1 till α4 form a hyphv with m being the free point for
everyαi. However, although these paths are independent graph-theoretically, they arenot
independent w.r.t. regular connections: bothγ1γ2 andγ4γ3 are paths, that run precisely
once through eachδ+j andδ−j and precisely twice throughγ. Consequently, the abelian
parts ofhA(γ1γ2) andhA(γ4γ3) coincide for every regular connectionA ∈ A up to some
nab in the abelian part ofN. Thus,θ(πv(A)) = hA(γ1)hA(γ2)hA(γ3)

−1hA(γ4)
−1 =

[gss, nab]N = [gssn
−1
ss , e]N ∈ K′ for somegss∈ Gssand somen = (nss, nab) ∈ N, hence

πv(A) ⊆ θ−1(K′) = K. SinceK is not dense inG4 = Av, Lemma A.1implies thatA
is not dense inA.

• The statement forA/G follows now again byCorollary A.2, sinceGv is the adjoint action
of G on G4 leavingK invariant. �

5. Discussion

The just proven lemma is in a certain sense a contrast to the usual expectation, that within
the functional integral framework the classical theory should be a dense subset of the
quantized theory (cf. as an easiest example the Wiener integral for the diffusion equation
[16]). Let us, therefore, discuss how some modification of the definition of generalized
connections could lead to the desired denseness of the regular connections.

1. The number of paths is reduced. This can most easily be done by sharpening the as-
sumptions regarding the smoothness of paths. However, in view of applying the whole
framework to quantum gravity, at least immersiveC∞-paths should be allowed. Then, of
course, we are no longer able to couple theories to gravity which have non-semisimple
structure groups.

2. The number of independent paths is reduced. One could try to plug the desired indepen-
dence of paths into the equivalence relation of paths. This idea closely follows the idea
of holonomy equivalence used in the first articles on Ashtekar connections[2,5]. Here
two paths are said to be equivalent iff they have the same parallel transports for every
regular connection. It is obvious that this way the proof ofLemma 4.7can no longer be
used: for instance,α1α2 andα3α4 would be equivalent in the abelian case. (But, note that
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this is not true in the non-abelian case. Although here the holonomies are not arbitrarily
selectable, they are not always equal.) However, the lack of denseness for non-abelian
andnon-semisimple structure groups remains true. This follows from the fact, that in the
semisimple caseπ{αi}i : A→ G4 is surjective, whenceα1α2 andα3α4 cannot be equiv-
alent at least ifG contains a non-trivial semisimple part. In fact, it has been shown[13]
that in the non-analytic immersed category for non-abelian structure groups two paths
are holonomically equivalent iff they are graph-theoretically equivalent. Therefore, in
these cases the usage of holonomy equivalence is not successful. Moreover, this method
has the drawback that in the case of non-immersed paths it is probably very difficult to
find at all concrete and explicit criteria for independence of paths.

3. The range of the parallel transports is restricted. This idea is precisely the basis for the
definition of connections using webs. Namely, here—although done only for smooth and
immersive paths—the spaceAWeb is not defined as a projective limit of allAw := G#w,
but as a projective limit of all imagesAw := πw(A) ⊆ G#w of regularconnections[7].
This way, automatically the surjectivity ofπw : A → AWeb is guaranteed, hence the
denseness ofA inAWebas well. (The denseness follows, because firstAWeb= lim← wAw,

second the set of all webs is directed and third the projectionsπw : A → Aw are per
definition surjective[9]. The denseness ofA/G in AWeb/G is now trivial.)

Unfortunately, none of the three possibilities discussed above is free of drawbacks such
that a “final” decision about the definition of generalized connections can at most be given
after studying more and concrete physical models.

6. Measure

In this final section, we generalize the theorem of Marolf and Mourão[14] about the
Ashtekar–Lewandowski measure ofA andA/G to the case of arbitrary path categories
considered here.

Theorem 6.1. BothA andA/G are contained in a set of Ashtekar–Lewandowski measure
0 providedG is non-trivial.

In the case thatG is trivial, we haveA = A andA/G = A/G which means that the
regular connection as well as the regular gauge orbit form a set of full measure 1.

Before we are going to prove the theorem, we note that Mourão et al.[15] were able to
sharpen the statement above in the case ofA drastically: lete be some edge andes be the
respective initial path ofe w.r.t. the interval [0, s] for s ∈ [0,1]. Moreover, let

qĀ : [0,1] → G, s �→ hĀ(es)

for all Ā ∈ A. Then the set of all̄A ∈ A that possess just a single point in [0,1], whereqĀ is
continuous, is contained in aµ0-zero subset. This means, typically a generalized connection
is nowhere continuous. Although the proof has been done in the analytic case, it can be
transferred to the general case almost literally. However, that proof does not give a statement
on the measure ofA/G such that we will not reuse it. Instead our proof is motivated by that
of Marolf and Mourão: the only accessible quantities within the Ashtekar framework are
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parallel transports and holonomies. Therefore, one has to study how their behaviour is mod-
ified during the transition from regular to generalized connections. Typical for the regular
case is—in total contrast to the generalized case—that parallel transports depend in a certain
sense continuously on the paths. One can even prove that by means of a certain topology on
P the regular connections can be identified with the continuous homomorphisms fromP to
M [12]. In particular, “small” paths have “small” parallel transports. A more detailed anal-
ysis[9] yields the well-known result (see e.g.[14]) that for every regular connectionA the
differencehA(α)− eG is more or less proportional to the area enclosed by the sufficiently
“round” loop α. This behaviour implies that the holonomies of a regular connection are
trapped for shrinkingα in a small area aroundeG whose diameter decreases proportionally
to ‖hA(α)− eG‖• and whose Haar measure consequently decreases as|Gα|dim G. However,
generalized connections can even for very tinyα be anywhere inG.

Altogether we have the following proof.

Proof.

• Let first dimG = 0. Then (in an appropriate neighbourhood ofm) hα(A) = eG for all
regularA. Let now (αi)i∈N ⊆ HG be a sequence of mutually non-intersecting closed
edges having base pointm. Then

µ0(A) ≤ µ(π−1
{α1,... ,αi}({eG})) = µHaar({eG})i = (#G)−i

for all i ∈ N. SinceG is non-trivial, hence #G ≥ 2, we haveµ0(A) = 0. Analogously,
we getµ(A/G) = 0.

• Let now dimG > 0. We considerG as a subset of someU(n) ⊆ GlC(n) ⊆ C
n×n

(and sog ⊆ glC(n) = C
n×n as well), choose some AdG-invariant norm‖ · ‖• on

C
n×n and defineBε(eG) := {g ∈ G|‖g − eG‖• < ε} for all ε ∈ R+. (For instance,

‖D‖• := sup�x∈Cn,‖�x‖=1‖D�x‖, D ∈ C
n×n, is AdG-invariant due to the unitarity of any

compact group.) Obviously,Bε(eG) is always an AdG-invariant set.
Next, we choose some chart mappingκ : M ⊇ U → κ(U), such thatm ∈ U. W.l.o.g.

κ(U) ⊆ R
dimM be bounded andκ(m) = 0. We assign toU the Euclidean metric and

choose some surfaceH ⊆ U spanned by two coordinates.
Finally, we assume that the chart image of everyα ∈ HG used below is a circle in

κ(H) ⊆ R
2. The area of the domain enclosed byα in H be|Gα|.

• Now we define for allα and all realr ∈ R+, the set

Uα,r := π−1
α (Br|Gα|(eG)) ⊆ A

beingG-invariant by the Ad-invariance ofBε(eG). By the appendix in[10], we have
µ0(Uα,r) = µHaar(Br|Gα|(eG)) ≤ const(r|Gα|)dim G. Hence,µ0(Uα,r) goes to 0, in
particular, for|Gα| ↓ 0.

• Let now(αi)i∈N be some sequence of circles with|Gαi | ↓ 0, such that each two of them
have preciselym as common point. We define

Ur :=
⋂

i∈N
Uαi,r.

Obviouslyµ0(Ur) ≤ inf i {µ0(Uαi,r)} = 0.
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• On the other hand, for everyA ∈ A there is somecA ∈ R+ with A ∈ Uα,cA ≡
π−1
α (BcA|Gα|(eG)) for all circlesα (cf. Appendix in[10]). Hence,A ∈ UcA . Therefore,
U := ⋃

r∈N+ Ur is obviously aµ0-zero subset containingA. SinceU is evenG-invariant,
U/G is aµ0-zero subset as well, now containingA/G = A/G. �

We note finally, that the just proven support property is typical for the description of
physical theories in terms of functional integrals. For instance, it is well known that in the
Wiener-integral case the classical configuration space of allC1-paths is a zero subset in
its completion (cf.[16]). But, this is to be expected, since otherwise the measure on the
completion would define a non-trivial, physically “reasonable” measure on the classical
configuration space as well, although the existence of such a measure usually is seen to be
unlikely.
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Appendix A. Denseness criteria

LetA be a set and≤ be a partial ordering onA. Next, letXa be a topological space for
eacha ∈ A andπa2

a1 : Xa2 → Xa1 for all a1 ≤ a2 be a continuous and surjective map
with πa2

a1 ◦ πa3
a2 = π

a3
a1 if a1 ≤ a2 ≤ a3. The corresponding projective limit lim←a∈AXa

is denoted byX. Furthermore, letπa : X → Xa be the usual continuous projection on
the a-component andX be some subset ofX. Finally, letA be directed, i.e. for any two
a′, a′′ ∈ A, there is ana ∈ A with a′, a′′ ≤ a.

Lemma A.1. X is dense inX iff πa(X) is dense inXa for all a ∈ A.

The⇐-direction has already been proven in[8]. We quote it for completeness.

Proof.

⇒ Let a ∈ A be arbitrary and letUa ⊆ Xa be open. Thenπ−1
a (Ua) is open inX. Hence,

there is anx ∈ X with x ∈ π−1
a (Ua). Consequently,πa(x) ∈ πa(π−1

a (Ua)) ⊆ Ua.
⇐ Let U ⊆ X be open and non-empty, i.e.U ⊇ ⋂

i π
−1
ai
(Vi) �= Ø with openVi ⊆ Xai

and finitely manyai ∈ A. SinceA is directed, there is ana ∈ A with ai ≤ a for all
i and thusU ⊇ π−1

a (
⋂
i(π

a
ai
)−1(Vi)) with non-emptyV := ⋂

i(π
a
ai
)−1(Vi) ⊆ Xa. V

is open becauseπaai is continuous. Sinceπa(X) is dense inXa, there is anx ∈ X with
πa(x) ∈ V and soπai(x) ∈ Vi for all i, hencex ∈ U. �

Now, let additionallyG := lim← a∈AGa be some projective limit of compact topological

groupsGa acting continuously and compatibly on the corresponding compact Hausdorff
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spacesXa. Moreover, for both projective systems all the projectionsπa be surjective. For a
precise definition of projective-limit group actions, see[4,3,9].

Corollary A.2. X/G is dense inX/G iff πa(X)/Ga is dense inXa/Ga for all a ∈ A. In
particular, we have

• denseness ifπa(X) = Xa for all a ∈ A; and
• non-denseness ifπa(X) is for all a ∈ A contained in someGa-invariant and non-dense

subset ofXa.

Proof. We defineX/G := lim← a∈AXa/Ga. Then, by the assumptions, the map

φ : X/G→ X/G, [(xa)a∈A] �→ ([xa])a∈A

is a well-defined homeomorphism[9]. By the lemma above,X/G is now dense inX/G iff
πa(φ(X/G)) = πa(X)/Ga is dense inXa/Ga for all a ∈ A.

To prove the non-denseness in the special case thatπa(X) is for all a ∈ A contained in
someGa-invariant and non-dense subset ofXa, use the fact that the canonical projections
Xa → Xa/Ga are always open. The other special case is trivial. �

The above assumptions for the projective limits are fulfilled forX = A andG defined
using hyphs as label setA [11,8,9].
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